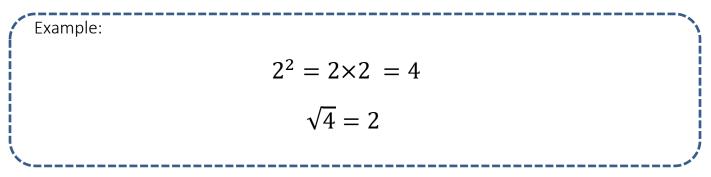
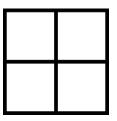

UZ:LZ - Perfect Squares

When a base is raised to the second power, we say it is squared.

The length and width of the square are **the same** (in this case they are 3).


How many can you remember?

1 ²	2 ²	3 ²	4 ²
5 ²	6 ²	7 ²	8 ²
9 ²	10 ²	11 ²	12 ²
13 ²	14 ²	15	16 ²
17 ²	18 ²	19 ²	20 ²


Just like the opposites we already know...

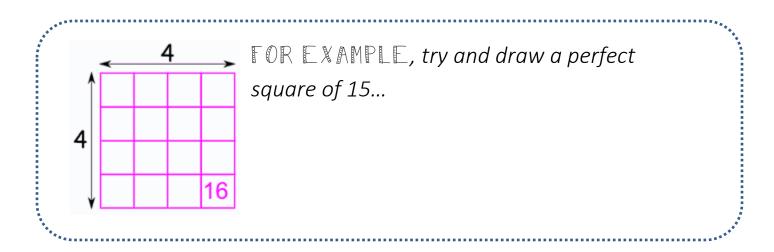
- adding & subtracting
- multiplying & dividing

Squares also have an opposite... <u>SQUARE ROOTS.</u>

This is like saying, the SQUARE is made up of 4 units, what is the length of its sides?

Find the square root of the following numbers...

√25	
√100	
√81	



You can also find square roots in your calculator. Try these next problems with help from the calculator:

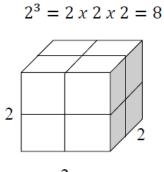
√169	√576	$\sqrt{484}$	√169
$\sqrt{400}$	<u>√900</u>	√2500	√77

Are all the answers whole numbers?

If you take the square root of a number and it gives you an answer with a decimal, this number is not a **perfect square**.

Name 5 numbers between 1 - 50 that are NOT perfect squares:

Perfect Cubes


When a base is raised to the power of three, we say it is <u>"cubed"</u>.

2 2

The length, width and height of the cube are all equal (in this case, they are all 2).

1 ³	2 ³	3 ³	4 ³
5 ³	6 ³	7 ³	8 ³
9 ³	10 ³	11 ³	12 ³

How many can you find?

