U2: 14 - Exponent Laws $1+2$

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) })^{2 x^{2}} 2^{3+2}=2^{5}=64 \\
& (-3)^{2+5}=(-3)^{7}=-2,187 \\
& x^{3+5}=x^{8} \\
& y^{2+1+y^{10, y y}+y^{2}}=y^{10} \longrightarrow(y \cdot y) \cdot(y) \cdot(y \cdot y \cdot y \cdot y \cdot y \cdot y \cdot y) \\
& a^{3} a^{3} b^{2}=a^{3+3} b^{2}=a^{6} b^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{36}{36}=1 \\
& f_{x}=\frac{x \cdot x \cdot x \cdot x \cdot x}{x \cdot x \cdot x} \\
& \text { x } \\
& \frac{x \cdot x \cdot x}{x \cdot x \cdot x}=x \cdot x=x^{2} \\
& \frac{a^{m}}{a^{n}}=a^{m-n} \\
& \text { When diving powers with the some bases, subtract the }
\end{aligned}
$$

$$
\begin{aligned}
& 0,(-)^{p+(-1)^{2}} \frac{(-5)^{9}}{(-5)^{6}}=(-5)^{9-6}=(-5)^{3} \\
& \frac{x^{3}(-5)^{6}}{x^{5}}=x^{3-5}=x^{-2} \\
& \text { by } \frac{y^{2}+1}{y^{7}}=\frac{y^{3}}{y^{7}}=y^{3-7}=y^{-4} \\
& \text { (1) } \frac{a^{3} b^{2}}{a^{3}}=b^{2}
\end{aligned}
$$

