U3:L2 Adding polynomials
 same value of expOnent Underline the terms that are like terms:

b) ${ }^{7 x x^{2}} \mathrm{NO} \mathrm{N}^{-5 x^{2}} \mathrm{~N} \cup$

Polynomials are simplified, if

- There is on l 1 term per degree
- No terms with a 0 coefficient
$\xrightarrow[\text { simplify. }]{\text { s.x+7) }}$ if \oplus you can drop brackets
$5 x+1+3 x+7$
$5 x+3 x+1+7$

$$
\begin{aligned}
& -3 x+4 x+3+2 \\
& \\
& +1 x+5
\end{aligned} \rightarrow x+5
$$

$$
\begin{aligned}
& 8 a^{2}+2 a-3-5 a^{2}+4 a+7 \\
& 8 a^{2}-5 a^{2}+2 a+4 a-3+7 \\
& 3 a^{2}+6 a+4
\end{aligned}
$$

$$
\begin{aligned}
& \left.3 x^{2}+2 x+4\right)-5 x^{2}+3 x-5 \\
& 3 x^{2}-5 x^{2}+2 x+3 x+4-5 \\
& -2 x^{2}+5 x-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Show your work: } 7 s+14 \\
& +-6 s^{2}+10 s-2 \\
& -6 s^{2}+17 s+12
\end{aligned}
$$

in "standard form"

You can add polynomials from shape perimeters too...

$$
x+1-\underbrace{x+1}_{2 x+3}
$$

$p=$ all sides 3 dded

$$
\begin{aligned}
& p=\text { all sides added } \\
& p=(2 x+3)+(x+1)+(2 x+3)+(x+1) \\
& p=2 x+3+x+1+2 x+3+x+1 \\
& p=2 x+x+2 x+x+3+1+3+1 \\
& p=6 x+8 \\
& p=(10 c+3)+(6 c+4)+(8 c+1) \\
& p=10 c+3+6 c+4+8 c+1 \\
& p=10 c+6 c+8 c+3+4+1 \\
& c p=24 c+8
\end{aligned}
$$

$$
\begin{aligned}
& p=(x+8)+(2 x)+(2)+(x)+\left(x^{2}\right)+(3 x) \\
& p=x+8+2 x+2+x+x^{2}+3 x \\
& c p=x^{2}+x+2 x+3 x+3 x+8+2 \\
& p=x^{2}+7 x+10
\end{aligned}
$$

