\qquad
U3:L3 SUb+racting polynomials
To subtract polynomials, we must also match \qquad terms We must remember Integen RUleS and apply them to properly work with positive and negative numbers.
***Remember, when working with integers, we can always add

Example:

The difference between adding and subtracting polynomials is that when we subtract, we musydistributethe negative sign to the entire
polynomial. (in order to drop bracket) Example:

$$
\begin{aligned}
& 2+6 x^{2}-7+3 x^{2} \\
& 6 x^{2}+3 x^{2}+2-7 \\
& 9 x^{2}-5 \\
& 5-6 w^{2}-3+w^{2} \\
& -6 w^{2}+w^{2}+5-3 \\
& -5 w^{2}+2 \\
& -6 x^{\left(2+6 x^{2}+5 x+2 x^{2}\right.} \\
& -6 x^{2}-4 x^{2}+5 x+2 x-4 x^{2}-5+2 x+2-5 \\
& -10 x^{2}+7 x-3 x
\end{aligned}
$$

Adding and Subtracting polynomials with Fractions
Examples

$$
\begin{aligned}
& \begin{array}{l}
\frac{-1}{6} c d^{3}+\frac{1}{3} c d^{3} \\
\frac{-1}{6} c d^{3}+\frac{2}{6} c d^{3}+\frac{2}{7}
\end{array} \int \frac{1}{6} c d^{3}+\frac{2}{7} \\
& \left(-\frac{3}{5} k^{2}-\left(-\frac{1}{5} k^{k}\right)\right. \\
& -\frac{3}{5} k^{2}+\frac{2}{5} k^{6}
\end{aligned}
$$

OR

$$
\frac{-6}{3} \frac{\left(-2 w^{5}\right)}{1}-\frac{2}{3} w^{5}-\frac{2}{3} w^{5} \quad \frac{-8}{3} w^{5}-2 \frac{2}{3} w^{5}
$$

